网站综合信息 bayesia.com.cn
    • 标题:
    • Bayesia USA | Singapore 
    • 关键字:
    •  
    • 描述:
    •  
    • 域名信息
    • 域名年龄:12年10个月23天  注册日期:2013年03月16日  到期时间:2014年03月16日
      邮箱:domains  电话:
      注册商:广东时代互联科技有限公司 
    • 服务器空间
    • IP:8.15.231.97 同IP网站65535个 详情
      地址:美国 科罗拉多州布隆菲尔德市Level 3通信股份有限公司
    • 备案信息
    • 备案号:
    网站收录SEO数据
    • 搜索引擎
    • 收录量
    • 反向链接
    • 其他
    • 雅虎
    •  
    •  
    •  
    • 搜搜
    •  
    •  
    •  
    • 搜狗
    •  
    •  
    • 评级:-/10  
    • 360搜索
    •  
    •  
    •  
    域名流量Alexa排名
    •  
    • 一周平均
    • 一个月平均
    • 三个月平均
    • Alexa全球排名
    • -  
    • 平均日IP
    • 日总PV
    • 人均PV(PV/IP比例)
    • 反向链接
    • dmoz目录收录
    • -  
    • 流量走势图
    域名注册Whois信息

    bayesia.com.cn

    域名年龄: 12年10个月23天
    注册时间: 2013-03-16
    到期时间: 2014-03-16
    注 册 商: 广东时代互联科技有限公司
    注册邮箱: domains

    获取时间: 2013年10月03日 11:08:24
    Domain Name: bayesia.com.cn
    ROID: 20130316s10011s82783360-cn
    Domain Status: clientTransferProhibited
    Registrant ID: p42908472
    Registrant: MARCARIA NETWORK LTD
    Registrant Contact Email: domains
    Sponsoring Registrar: 广东时代互联科技有限公司
    Name Server: ns1.bayesia.us
    Name Server: ns2.bayesia.us
    Registration Date: 2013-03-16 03:39:00
    Expiration Date: 2014-03-16 03:39:00
    DNSSEC: unsigned
    其他后缀域名
    • 顶级域名
    • 相关信息
    网站首页快照(纯文字版)
    抓取时间:2016年11月06日 22:46:28
    网址:http://bayesia.com.cn/
    标题:Bayesia USA | Singapore
    关键字:
    描述:
    主体:
    HomeDownload BayesiaLab TrialBayesiaLab Knowledge Base & Library
    BayesiaLab 5.2: Analytics, Data Mining, Modeling & Simulation
    BayesiaLab is a powerful desktop application (Windows/Mac/Unix) for knowledge discovery, data mining, analytics, predictive modeling and simulation - all based on the paradigm of Bayesian networks. Bayesian networks have become a very powerful tool for deep understanding of very complex, high-dimensional problem domains, ranging from bioinformatics to marketing science.
    BayesiaLab is the world’s only comprehensive software package for learning, editing and analyzing Bayesian networks. It provides perhaps the easiest way to practically apply artificial intelligence tools, thus transforming and, more importantly, massively accelerating research workflows.
    Continue Reading
    New White Paper: Introduction to Bayesian Networks and BayesiaLab
    Click to download the white paper
    With Professor Judea Pearl receiving the prestigious 2011 A.M. Turing Award, Bayesian networks have presumably received more public recognition than ever before. Judea Pearl’s achievement of establishing Bayesian networks as a new paradigm is fittingly summarized by Stuart Russell:
    “[Judea Pearl] is credited with the invention of Bayesian networks, a mathematical formalism for defining complex probability models, as well as the principal algorithms used for inference in these models. This work not only revolutionized the field of artificial intelligence but also became an important tool for many other branches of engineering and the natural sciences. He later created a mathematical framework for causal inference that has had significant impact in the social sciences.”
    While their theoretical properties made Bayesian networks immediately attractive for academic research, especially with regard to the study of causality, the arrival of practically feasible machine learning algorithms has allowed Bayesian networks to grow beyond its origin in the field of computer science. Since the first release of the BayesiaLab software package in 2001, Bayesian networks have finally become accessible to a wide range of scientists and analysts for use in many other disciplines.
    In this introductory paper, we present Bayesian networks (the paradigm) and BayesiaLab (the software tool), from the perspective of the applied researcher.
    In Chapter 1 we begin with the role of Bayesian networks in today’s world of analytics, juxtaposing them with traditional statistics and more recent innovations in data mining.
    Continue Reading
    Subscribe to Newsletter
    Subscribe to Newsletter
    Your Name
    Please let us know your name.
    Your Email 
    Please let us know your email address.
    What letters do you see?
    RefreshInvalid Input
    Connect with Us
    MenuHomeBayesiaLab SoftwareBayesian NetworksBlogEventsCourses & SeminarsArchived WebinarsBayesiaLab Clients Around the WorldCareers with BayesiaRecommended BooksAbout UsBayesiaLab Knowledge Base & Library
    White Pape

    © 2010 - 2020 网站综合信息查询 同IP网站查询 相关类似网站查询 网站备案查询网站地图 最新查询 最近更新 优秀网站 热门网站 全部网站 同IP查询 备案查询

    2026-01-30 09:44, Process in 0.0052 second.